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Abstract

The double diffusive convection in a two-component couple stress liquid layer with Soret effect is studied using both linear and non-linear
stability analyses. The linear theory is based on normal mode technique and the non-linear analysis is based on a minimal representation of double
Fourier series. The effect of couple stress parameter, the Soret parameter, the solute Rayleigh number, the Prandtl number and the diffusivity ratio
on the stationary, oscillatory and finite amplitude convection are shown graphically. It is found that the effects of couple stress are quite large and
the positive Soret number enhances the stability while the negative Soret number enhances the instability. The non-linear theory predicts that,
finite amplitude motions are possible only for negative Soret parameter. The transient behaviour of thermal and solute Nusselt numbers has been
investigated by solving numerically a fifth order Lorenz model using Runge–Kutta method.
© 2005 Elsevier SAS. All rights reserved.
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1. Introduction

The gradients of two stratifying agencies, such as heat and
salt, having different diffusivities are simultaneously present in
a fluid layer, a variety of interesting convective phenomena can
occur which are not possible in a single component fluid. Con-
vection in a fluid layer with two or more stratifying agencies
has been the subject of extensive theoretical and experimen-
tal investigations in the last few decades. Excellent reviews of
these studies have been reported by Turner [1–3], Huppert and
Turner [4], Platten and Legros [5]. The interest in the study of
two or multi-component convection has developed as a result
of the marked difference between single component and multi-
component systems. In contrast to single component systems,
convection sets in even when density decreases with height,
that is, when the basic state is hydrostatically stable. The dou-
ble diffusive convection is of importance in various fields such
as high quality crystal production, liquid gas storage, oceanog-
raphy, production of pure medication, solidification of molten
alloys, and geothermally heated lakes and magmas.
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Convection in a two-component fluid is characterized by
well-mixed convecting layers, which are separated by relatively
sharp density steps. These steps may be of the ‘finger’ or ‘diffu-
sive’ kind and both types of interface must enable a net release
of potential energy preferentially transporting the destabiliz-
ing property. Salt fingers will occur when warm salty fluid
overlies cooler fresher fluid and diffusive instability will occur
when warm salty fluid underlies the fresh cooler fluid. In two-
component system, in the absence cross-diffusion, instability
can occur only if, at least one of the components is destabiliz-
ing. However, in the presence of cross-diffusions produced by
the simultaneous interference of two transport properties e.g.,
Soret and Dufour effects the situations may be quite different
[6–8]. Hurle and Jakeman [9] argue that for liquid mixtures the
Dufour term is indeed very small and thus the Dufour effect
will be negligible in comparison to the Soret effect. Hence one
may ignore the Dufour term when dealing with flows in liquids.

In most practical situations, where multicomponent fluid
flows are involved, cross-diffusion known as the Soret effect
is more often the main driver of various convective phenom-
ena that occur within a thermal stratified media. Oscillatory and
subcritical motions and hysteresis effects are some examples of
these phenomena. Owing to their presence in nature and in en-
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Nomenclature

Amn amplitudes of streamline perturbation
Bmn amplitudes of thermal perturbation
Emn amplitudes of concentration perturbation
C couple stress parameter, μ1/μd2

d height of the fluid layer . . . . . . . . . . . . . . . . . . . . . m
D solute diffusivity . . . . . . . . . . . . . . . . . . . . . . . m2 s−1

D1 Soret coefficient . . . . . . . . . . . . . . . kg m−1 s−1 K−1

DS Soret parameter, D1βS/κβT

g gravitational acceleration . . . . . . . . . . . . . . . . m s−2

H rate of heat transport per unit area . . . . . . m s−1 K
J rate of mass transport per unit area . . . m−2 kg s−1

K2 π2(α2 + 1)

Nu thermal Nusselt number,
NuS solute Nusselt number
p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−1 s−2

Pr Prandtl number, ν/κ

q velocity vector, (u, v,w) . . . . . . . . . . . . . . . . . m s−1

R thermal Rayleigh number, βT g�T d3/νκ

RS solute Rayleigh number, βSg�Sd3/νκ

S solute concentration . . . . . . . . . . . . . . . . . . . kg m−3

�S salinity difference between the walls . . . . . kg m−3

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
�T temperature difference between the walls . . . . . K
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
x, y, z space coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Greek symbols

α wavenumber
βS solute expansion coefficient . . . . . . . . . . . . kg−1 m3

βT thermal expansion coefficient . . . . . . . . . . . . . . K−1

Φ dimensionless amplitude of concentration
perturbation

η 1 + CK2

κ thermal diffusivity . . . . . . . . . . . . . . . . . . . . . m2 s−1

μ dynamic viscosity . . . . . . . . . . . . . . . . . . kg m−1 s−1

μ1 couple stress viscosity . . . . . . . . . . . . . . . . kg m s−1

ν kinematic viscosity, μ/ρ0 . . . . . . . . . . . . . . . m2 s−1

Θ dimensionless amplitude of temperature
perturbation

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

σ growth rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s−1

τ diffusivity ratio, D/κ

ω frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s−1

ψ stream function . . . . . . . . . . . . . . . . . . . . . . . . m2 s−1

Ψ dimensionless stream function

Subscripts

b basic state
c critical
0 reference value

Superscripts

∗ dimensionless quantity
′ perturbed quantity
f finite amplitude
osc oscillatory
st stationary
gineering applications such as in geophysics, oil reservoirs, and
groundwater, the researchers have developed a great interest in
these types of flows. Soret effect, which describes the diffusion
of solute along a temperature gradient, within a horizontal layer
heated from below has attracted a considerable attention in pat-
tern formations and hysteresis phenomena. In such convective
configurations, a negative Soret coefficient, which causes the
heavier component to migrate towards the hot wall, induces a
variety of pattern formations. Multiple steady oscillatory states,
subcritical flow, standing traveling waves and Hopf bifurcations
are some examples of these phenomena.

An experimental and theoretical study of Soret driven ther-
mosolutal convection in a binary fluid mixture has been made
by Hurle and Jakeman [9]. They found that when the water–
methanol mixture is heated from below, initially the oscillatory
flow was observed and later it was bifurcated towards the fi-
nite amplitude motion. Oscillatory motions in Benard cell due
to Soret effect has been studied by Platten and Chavepeyer [10].
They reported that as predicted by the linear theory oscilla-
tory motions are observed in the two-component system with
negative Soret coefficients and the order of magnitude of the
period of oscillations is confirmed by experiments. Lawson and
Yang [11] have investigated the Benard problem in a binary
mixture of dilute gases in which an imposed vertical temper-
ature induces a concentration gradient owing to the thermal
diffusion effect. Their numerical results indicate that instability
will set in only as stationary convection. This is distinctly dif-
ferent from the case of liquids and concentrated gases, in which
the Soret effect gives rise to oscillatory instability.

Thermal convection in a binary fluid driven by the Soret and
Dufour effects has been investigated by Knobloch [12]. He has
shown that equations are identical to the thermosolutal problem
except for a relation between the thermal and solute Rayleigh
numbers. Lee et al. [13] have studied experimentally the on-
set of Rayleigh–Benard convection in liquid mixtures. They
reported that the overstable motions are possible when heated
from below and only stationary motions exist when heated from
above. Platten and Legros [5] have carried out a weak non-
linear stability analysis of the binary fluid mixtures with stress-
free boundaries using the Lorenz model. They determined the
threshold of subcritical oscillatory flows. Barten et al. [14,15]
have observed the non-linear traveling wave and stationary on-
set for the negative values of Soret coefficient in the mixtures
of binary fluids. They observed the oscillatory convection in
a finite container containing the binary fluid systems such as
3He–4He and water–ethanol with realistic boundary conditions.
They used the linear stability analysis to find the criteria for the
onset of oscillatory convection. A study of convective instabil-
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ity in a fluid mixture heated from above with negative separa-
tion ratio (Soret coefficient) was performed experimentally by
Porta and Surko [16]. Although the linear analysis predicts that
the instability occurs at zero wavenumber, a large wavenumber
pattern is observed. The onset is supercritical and convection
amplitude exhibits damped oscillations for sudden change in
the forcing parameters. Recently, Bourich et al. [17] have given
an exhaustive review of literature on the Soret effect convection
either in fluid or porous media.

With the growing importance of non-Newtonian fluids in
modern technology and industries, the investigations on such
fluids are desirable. During recent years the theory of polar
fluids has received much attention and this is because the tra-
ditional Newtonian fluids cannot precisely describe the charac-
teristics of the fluid flow with suspended particles. The study
of such fluids have applications in a number of processes that
occur in industry such as the extrusion of polymer fluids, solid-
ification of liquid crystals, cooling of metallic plate in a bath,
exotic lubricants and colloidal and suspension solutions. In the
category of non-Newtonian fluids couple stress fluid has dis-
tinct features, such as polar effects. The theory of polar fluids
and related theories are models for fluids whose microstructure
is mechanically significant. The constitutive equations for cou-
ple stress fluids were given by Stokes [18]. The theory proposed
by Stokes [18] is the simplest one for micro fluids, which allows
polar effects such as the presence of couple stress, body couples
and non-symmetric tensors. Couple stresses are found to appear
in noticeable magnitude in fluids with very large molecules.
Rayleigh–Benard convection in fluids with stress non-linearly
proportional to velocity gradient is studied by few researchers
(see e.g. [19–21]). However the study on double diffusive con-
vection in couple stress fluids is not available to the authors’
knowledge. Therefore, in the present paper we investigate the
effect of Soret coefficient on the onset of double diffusive con-
vection using the Stokes’ [18] couple stress model. Further we
perform a non-linear stability analysis of the problem using the
minimal representation of Fourier series with the object of com-
puting heat and mass transports.

2. Mathematical formulation

2.1. Basic equations

The continuity and momentum equations governing the mo-
tion of an incompressible couple stress fluid in the absence of
body couple are given by [18]

∇ · q = 0 (2.1)

ρ0

[
∂q
∂t

+ (q · ∇)q
]

= −∇p + μ∇2q − μ1∇4q + ρg (2.2)

In case of polar fluids the action of one part of the body on its
neighborhood cannot be represented by a force alone but rather
by a force and couple. The third term on the right-hand side of
Eq. (2.2) represents the effects of couple stresses in an incom-
pressible fluid. Here μ1 is a material constant responsible for
the couple stress property and has the dimension of momentum
(MLT −1). According to Stokes’ theory, the rheological flow
properties for an incompressible viscous couple stress fluid are
characterized by the two constants μ and μ1. Since the dimen-
sion of μ is ML−1T −1 and that of μ1 is MLT −1, the ratio
(μ1/μ)1/2 has the dimension of length (see Appendix A for the
constitutive equations for couple stress fluid).

The effect of couple stress are quite large for large values
of the non-dimensional number a = l/d , where d is the typical
dimension of the flow geometry and l is the material constant
l = (μ1/μ)1/2. If l is a function of the molecular dimensions of
the liquid, it will vary greatly for different liquids. For example,
the length of a polymer chain may be a million times the diam-
eter of water molecule. Therefore, one may expect that couple
stresses appear in noticeable magnitudes in liquids with large
molecules.

The phenomenological equations relating the fluxes of heat
JT and matter JC to the thermal and solute gradients present in
binary mixture may be written as (De Groot and Mazur [22])

JT = −k∇T − ρT S(∂λ/∂S)D′∇S (2.3)

JC = −ρD
[
ST S(1 − S)∇T + ∇S

]
(2.4)

where k is the thermal conductivity, D diffusion constant, ρ

density, λ the chemical potential of the solute. T and S are
temperature and concentration respectively. The terms contain-
ing the Soret coefficient ST and Dufour coefficient D′ give rise
to interaction between the thermal and solute fields even when
the mixture is at rest. Since D′ = ST D (the Onsager recipro-
cal principle), the Dufour coefficient is of order of magnitude
smaller than the Soret coefficient in liquids, and the correspond-
ing contribution to the heat flux may be neglected (see e.g.
Hurle and Jakeman [9] and Straughan and Hutter [23]). In the
present paper we are dealing with liquids, and Eq. (2.3) will be
replaced by

JT = −k∇T (2.5)

Hurle and Jakeman [9] treat the term S(1 − S) in the Soret ef-
fect as having a mean constant value, hence we here treat the
Soret term to have a constant coefficient. From a mathematical
viewpoint we may then without loss of generality, incorporating
Eqs. (2.4) and (2.5), write the temperature and concentration
equations, in the form

∂T

∂t
+ (q · ∇)T = κ∇2T (2.6)

∂S

∂t
+ (q · ∇)S = D∇2S + D1∇2T (2.7)

Here D1 quantifies the contribution to the mass flux due to tem-
perature gradient. The equation of state is

ρ = ρ0
[
1 − βT (T − T0) + βS(S − S0)

]
(2.8)

The validity of the Oberbeck–Boussinesq approximation for
the Navier–Stokes case has been proved recently by Rajagopal
et al. [24]. There is need to seek the status of this approxima-
tion in the present case. The effect of suspended particles is
to enhance the viscosity of the carrier fluid and does in any
foreseeable way work to violate the Oberbeck–Boussinesq ap-
proximation. With this argument we accept the approximation
for couple stress fluid.
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Fig. 1. Physical configuration.

We consider a horizontal couple stress liquid layer of thick-
ness d confined between two parallel infinite stress free bound-
aries. The x-axis is taken along the lower boundary, and the
z-axis vertically upward. The couple stress liquid is heated and
salted from below. The temperature and concentration differ-
ence between the bounding walls being, �T and �S respec-
tively. The schematic of the physical configuration is shown in
Fig. 1.

2.2. Basic state

The basic state of the fluid is quiescent and is given by,

qb = (0,0,0), p = pb(z), T = Tb(z)

S = Sb(z), ρ = ρb(z) (2.9)

Using (2.9), Eqs. (2.1)–(2.2) and (2.6)–(2.8) yield

dpb

dz
= ρbg,

d2Tb

dz2
= 0,

d2Sb

dz2
= 0

ρb = ρ0
[
1 − βT (Tb − T0) + βS(Sb − S0)

]
(2.10)

2.3. Perturbed state

On the basic state we superpose perturbations in the form

q = qb + q′, T = Tb(z) + T ′, S = Sb(z) + S′

p = pb(z) + p′, ρ = ρb(z) + ρ′ (2.11)

where primes indicate perturbations. Introducing (2.11) in
Eqs. (2.1)–(2.2) and (2.6)–(2.8) and using basic state equa-
tions (2.10), we obtain

∇ · q′ = 0 (2.12)

ρ0

[
∂q′

∂t
+ (q′ · ∇)q′

]

= −∇p′ + μ∇2q′ − μ1∇4q′ + ρ′g (2.13)
∂T ′

∂t
+ (q′ · ∇)T ′ + w′ ∂Tb

∂z
= κ∇2T ′ (2.14)

∂S′

∂t
+ (q′ · ∇)S′ + w′ ∂Sb

∂z
= D∇2S′ + D1∇2T ′ (2.15)

ρ′ = −ρ0[βT T ′ − βSS′] (2.16)

We consider only two-dimensional disturbances and define
stream function ψ by
(u′,w′) =
(

∂ψ

∂z
,−∂ψ

∂x

)
(2.17)

which satisfy the continuity Eq. (2.12).
Eliminating pressure from (2.13), introducing the stream

function ψ and non-dimensionalising the resulting equation
as well as Eqs. (2.14) and (2.15) using the following non-
dimensional parameters

(x∗, z∗) =
(

x

d
,
z

d

)
, t∗ = t

d2/κ
, ψ∗ = ψ

κ

T ∗ = T ′

�T
, S∗ = S′

�S
(2.18)

we obtain

1

Pr

∂

∂t

(∇2ψ
) = −R

∂T

∂x
+ RS

∂S

∂x
+ ∇4ψ

− C∇6ψ + 1

Pr

∂(ψ,∇2ψ)

∂(x, z)
(2.19)

∂T

∂t
= −∂ψ

∂x
+ ∇2T + ∂(ψ,T )

∂(x, z)
(2.20)

∂S

∂t
= −∂ψ

∂x
+ τ∇2S + DS

R

RS

∇2T + ∂(ψ,S)

∂(x, z)
(2.21)

where

Pr = ν

κ
, Prandtl number

R = βT g�T d3

νκ
, thermal Rayleigh number

RS = βSg�Sd3

νκ
, solute Rayleigh number

C = μ1

μd2
, couple stress parameter

τ = D

κ
, diffusivity ratio

DS = D1

κ

βS

βT

, Soret parameter

and the asterisks have been dropped for simplicity. Eqs. (2.19)–
(2.21) are solved for stress-free, isothermal, vanishing couple-
stress boundary conditions, namely,

ψ = ∂2ψ

∂z2
= ∂4ψ

∂z4
= T = S = 0 at z = 0,1 (2.22)

3. Linear stability theory

In this section, we discuss the linear stability analysis, which
is very useful in the local non-linear stability analysis discussed
in the next section. To make this study we neglect the Jacobians
in Eqs. (2.19)–(2.21) and assume the solutions to be periodic
waves of the form⎡
⎣ ψ

T

S

⎤
⎦ = eσ t

⎡
⎣ Ψ sin(παx)

Θ cos(παx)

Φ cos(παx)

⎤
⎦ sin(πz) (3.1)

where σ is the growth rate and in general a complex quantity
(σ = σr + iσi ), α is horizontal wavenumber.
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Substituting Eqs. (3.1) in the linearized version of Eqs.
(2.19)–(2.21), we get(

σ

Pr
+ ηK2

)
K2Ψ = −RπαΘ + RSπαΦ (3.2)

(
σ + K2)Θ = −παΨ (3.3)

(
σ + τK2)Φ = −παΨ − DS

R

RS

K2Θ (3.4)

where η = 1 + CK2, K2 = π2(α2 + 1) and η is representa-
tive of the viscosity of the fluid. In the case of Newtonian fluids
we have η = 1. Analyzing the expression for η it is obvious
that the suspended particles add to the viscosity in conformity
with the Einstein’s observation. The enforcement of Oberbeck–
Boussinesq approximation in suspensions is better than in the
Newtonian fluid case. This is some kind of justification for the
assumption of Oberbeck–Boussinesq approximation in suspen-
sions. For non-trivial solution of Ψ , Θ and Φ , we require

R =
{(

σ + K2)(σ + τK2)( σ

Pr
+ ηK2

)
K2

+ RSπ2α2(σ + K2)}

× {
π2α2[σ + K2(DS + τ)

]}−1 (3.5)

3.1. Marginal state

If σ is real, then marginal stability occurs when σ = 0. Then
Eq. (3.5) gives the stationary Rayleigh number Rst at the margin
of stability, in the form

Rst = ητK6

π2α2(DS + τ)
+ RS

(DS + τ)
(3.6)

The minimum value of the Rayleigh number Rst occurs at the
critical wavenumber α = αc where αc satisfies the equation

3Cπ2(α2)2 + 2
(
1 + Cπ2)α2 − (

1 + Cπ2) = 0 (3.7)

We note that the critical wavenumber αc depends on the couple
stress parameter C. In the absence of Soret effect, the expres-
sion for Rst reduces to

Rst = ηK6

π2α2
+ RS

τ
(3.8)

Further in the case of single component system, RS = 0,
Eq. (3.8) gives

Rst = ηK6

π2α2
(3.9)

with the critical value given by,

Rst
c = π4(1 + α2

c )
3[1 + Cπ2(1 + α2

c )]
α2

c

(3.10)

and the critical wavenumber αc is to be obtained from Eq. (3.7).
These are exactly the values given by Siddheshwar and Pranesh
[19] for a single component system. Further when C = 0, i.e.,
in the absence of couple stresses, we get the classical results
α2

c = 0.5 and Rst
c = 657.5 for clear viscous fluid (see e.g., Chan-

drasekhar [25]).
3.2. Oscillatory state

It is well known that the oscillatory motions are possible
only if some additional constraints like rotation, salinity gra-
dient and magnetic field are present. For the oscillatory mode
σr = 0 and σi �= 0. We put σ = iω (ω is real) in Eq. (3.5) and
rearrange the terms to get the oscillatory Rayleigh number Rosc

at the margin of stability, in the form

Rosc =
{
(1 + τ)

[
η2Pr + (1 + τ)η + τ

Pr

]
K6

+ π2α2RS(η Pr + τ)

}

× {
π2α2(1 + η Pr − DS)

}−1 (3.11)

and the non-dimensional frequency ω2 in the form

ω2 = −
{
ηK6(1 + τ)(τ + DS) + τK6

Pr
(τ + DS)

− ητK6 + π2α2(τ + DS − 1)RS

}

×
{
K2

[
η + (1 + τ)

Pr
− (τ + DS)

Pr

]}−1

(3.12)

In the next section we perform a non-linear stability analysis
and express heat and mass transfer by conduction and convec-
tion and we observe the effect of suspended particles through C

on it.

4. Non-linear theory

The finite amplitude analysis is carried out in this section via
Fourier series representation for the stream function ψ , temper-
ature T and concentration S in the form

ψ =
∞∑

m=1

∞∑
n=1

Amn(t) sin(mπαx) sin(nπz) (4.1)

T =
∞∑

m=0

∞∑
n=1

Bmn(t) cos(mπαx) sin(nπz) (4.2)

S =
∞∑

m=0

∞∑
n=1

Emn(t) cos(mπαx) sin(nπz) (4.3)

Substituting Eqs. (4.1)–(4.3) into the set of coupled non-linear
partial differential equations (2.19)–(2.21), we obtain a sys-
tem of coupled, non-linear ordinary differential equations. It is
however logical to use the observed fact that laboratory sys-
tems and practical situations involving suspensions often ex-
hibit flows dominated by a few spatial harmonics. This allows
one to choose a minimal representation from the above Fourier
series. Further, these series are starting values for solving a
more general non-linear convection problem.

The first effect of non-linearity is to distort the tempera-
ture and concentration fields through the interaction of ψ , T

and also ψ , S. The distortion of these fields will corresponds
to a change in the horizontal mean, i.e. a component of the
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form sin(2πz) will be generated. Thus a minimal Fourier series
which describes the finite amplitude free convection is given by,

ψ = A1(t) sin(παx) sin(πz) (4.4)

T = B1(t) cos(παx) sin(πz) + B2(t) sin(2πz) (4.5)

S = E1(t) cos(παx) sin(πz) + E2(t) sin(2πz) (4.6)

where the amplitudes A1(t), Bi(t) and Ei(t) are to be deter-
mined from the dynamics of the system.

Substituting Eqs. (4.4)–(4.6) into Eqs. (2.19)–(2.21) and
equating the coefficients of like terms we obtain the following
non-linear autonomous system of differential equations

Ȧ1 = −Rπα Pr

K2
B1 + RSπα Pr

K2
E1 − K2η PrA1 (4.7)

Ḃ1 = −παA1 − K2B1 − π2αA1B2 (4.8)

Ḃ2 = −4π2B2 + π2α

2
A1B1 (4.9)

Ė1 = −παA1 − K2τE1 − K2DS

R

RS

B1 − π2αA1E2 (4.10)

Ė2 = −4π2τE2 − 4π2DS

R

RS

B2 + π2α

2
A1E1 (4.11)

where the over dot denotes the time derivative.
The non-linear system of autonomous differential equations

is not suitable to analytical treatment for the general time-
dependent variable and we have to solve it using a numerical
method. However, one can make qualitative predictions as dis-
cussed below. The system of Eqs. (4.7)–(4.11) is uniformly
bounded in time and possesses many properties of the full
problem. Like the original equations (2.12)–(2.16), Eqs. (4.7)–
(4.11) must be dissipative. Thus volume in the phase space must
contract. In order to prove volume contraction, we must show
that velocity field has a constant negative divergence. Indeed,

∂Ȧ1

∂A1
+ ∂Ḃ1

∂B1
+ ∂Ḃ2

∂B2
+ ∂Ė1

∂E1
+ ∂Ė2

∂E2

= −[
K2(η Pr + 1 + τ) + 4π2(1 + τ)

]
(4.12)

which is always negative and therefore the system is bounded
and dissipative. As a result, the trajectories are attracted to a set
of measure zero in the phase space; in particular they may be
attracted to a fixed point, a limit cycle or, perhaps, a strange at-
tractor. From Eq. (4.12) we conclude that if a set of initial points
in phase space occupies a region V (0) at time t = 0, then after
some time t , the end points of the corresponding trajectories
will fill a volume

V (t) = V (0) exp
[−{

K2(η Pr + 1 + τ) + 4π2(1 + τ)
}
t
]

This expression indicates that the volume decreases exponen-
tially with time. We can also infer that, couple stresses and the
Prandtl number tend to enhance dissipation.

Finally we note that the system of Eqs. (4.7)–(4.11) are in-
variant under the symmetry transformation (A1,B1,B2,E1,E2)

→ (−A1,−B1,B2,−E1,−E2).
From qualitative predictions we look into the possibility of

an analytical solution. In the case of steady motions, Eqs. (4.7)–
(4.11) can be solved in closed form. Setting the left-hand sides
of Eqs. (4.7)–(4.11) equal to zero, we get
ηK4A1 + RπαB1 − RSπαE1 = 0 (4.13)

παA1 + K2B1 + π2αA1B2 = 0 (4.14)

8B2 − αA1B1 = 0 (4.15)

παA1 + K2DS

R

RS

B1 + τK2E1 + π2αA1E2 = 0 (4.16)

8τE2 + 8DS

R

RS

B2 − αA1E1 = 0 (4.17)

Writing B1, B2, E1 and E2 in terms of A1, using Eqs. (4.13)–

(4.17) and substituting these in (4.13), with
A2

1
8 = x we get

a1x
2 + b1x + c1 = 0 (4.18)

where

a1 = ηK2α4 (4.19)

b1 = ηK4α2

π2

(
1 + τ 2) + α4

K2

[
τRS + (DS − 1)R

]
(4.20)

c1 = ητ 2K6

π4
+ τ 2α2

π2

[
RS

τ
−

(
DS

τ
+ 1

)
R

]
(4.21)

The required root of Eq. (4.18) is,

x = 1

2a1

{−b1 + (
b2

1 − 4a1c1
)1/2} (4.22)

When we let the radical in the above equation to vanish, we
obtain the expression for finite amplitude Rayleigh number Rf ,
which characterizes the onset of finite amplitude steady mo-
tions. The finite amplitude Rayleigh number can be obtained in
the form

Rf = 1

2x1

{−x2 + (
x2

2 − 4x1x3
)1/2}

(4.23)

where

x1 = α8(DS − 1)2

K4

x2 = 2α8τRS

K4
(DS − 1) + 2ηK2α6

π2

(
1 + τ 2)(DS − 1)

+ 4ητ 2K2α2

π2

(
DS

τ
+ 1

)

x3 = η2K8α4

π4

(
τ 4 + τ 2 + 1

) + α8τ 2R2
S

K4

+ 2ηK2α2

π2
τ
(
1 + τ 2)RS − ητ 2K2α6

π2

RS

τ

5. Heat and mass transports

In the study of convection in fluids, the quantification of heat
and mass transport is important. This is because the onset of
convection, as Rayleigh number is increased, is more readily
detected by its effect on the heat and mass transport. In the basic
state, heat and mass transport is by conduction alone.

If H and J are the rate of heat and mass transport per unit
area respectively, then
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H = −κ

〈
∂Ttotal

∂z

〉
z=0

(5.1)

J = −D

〈
∂Stotal

∂z

〉
z=0

− D1

〈
∂Ttotal

∂z

〉
z=0

(5.2)

where the angular bracket corresponds to a horizontal average
and

Ttotal = T0 − �T
z

d
+ T (x, z, t) (5.3)

Stotal = S0 − �S
z

d
+ S(x, z, t) (5.4)

Substituting Eqs. (4.5) and (4.6) in Eqs. (5.3) and (5.4) respec-
tively and using the resultant equations in (5.1) and (5.2), we
get

H = κ�T

d
(1 − 2πB2) (5.5)

J = D�S

d

[
(1 − 2πE2) + DSR

τRS

(1 − 2πB2)

]
(5.6)

The thermal and solute Nusselt numbers are defined by

Nu = H

κ�T/d
= 1 − 2πB2 (5.7)

NuS = J

D�S/d
= (1 − 2πE2) + DSR

τRS

(1 − 2πB2) (5.8)

Writing B2 and E2 in terms of A1, using Eqs. (4.13)–(4.17),
and substituting in Eqs. (5.7) and (5.8) respectively, we obtain

Nu = 1 + 2π2α2x

K2 + π2α2x
(5.9)

NuS = 1 + 2π2α2x

τ(τK2 + π2α2xτ−1)

+ DSx

τRS

[
1 − 2π2α2(K2 − π2α2xτ−1)

(K2 + π2α2x)(τK2 + π2α2xτ−1)

]

(5.10)

The second term on the right-hand side of Eqs. (5.9) and second
and third terms on the right-hand side of (5.10) represent the
convective contribution to heat and mass transport respectively.

To know the transient behavior of thermal and solute Nusselt
numbers the autonomous system of Eqs. (4.7)–(4.11) have been
solved numerically using the Runge–Kutta method with appro-
priate initial conditions for different values of Rf , DS and C

and the expressions for the thermal and solute Nusselt numbers
are computed. The variations of the thermal and solute Nusselt
number with time are depicted in Figs. 6 and 7.

6. Results and discussion

The onset of double diffusive convection in a couple stress
liquid layer in the presence of Soret effect is investigated using
linear and non-linear theory. The linear theory gives the condi-
tion for the onset of stationary and oscillatory convection. The
non-linear convection provides information regarding quantity
of heat and mass transfer. The behavior of the system as a
function of RS depends upon the diffusivity ratio τ , the Soret
parameter DS , the couple stress parameter C and the Prandtl
number Pr.

The variation of the critical Rayleigh number for station-
ary and oscillatory modes with couple stress parameter C for
different values of the Soret parameter DS , diffusivity ratio τ ,
solute Rayleigh number RS and Prandtl number Pr is shown
in Fig. 2(a)–(d). We observe from these figures that the effect
of couple stresses are quite large for large values of the non-
dimensional parameter C. We also find that the bigger value
of C, the larger the value of the critical Rayleigh number R indi-
cating that the effect of large couple stresses is to delay the onset
of convection. Fig. 2(a) shows the effect of Soret parameter on
the onset of convection for a fixed value of Pr = 5.0, RS = 103

and τ = 0.3. We observe that for positive Soret number, the
convection first sets in as stationary mode and oscillatory mo-
tions are not possible. The system remains unstable with respect
to monotonous disturbances and hence stationary mode is most
dangerous and steady convection exists. Further an increase in
the value of Soret parameter advances the onset of stationary
convection. On the other hand it is interesting to note that, for
negative Soret number the convection first sets in as oscillatory
mode for small values of C. However, for C > 0.33 the trend
reverses, that is convection first sets in as stationary mode. The
effect of increasing (negatively) the value of Soret parameter is
not much significant in the case of oscillatory mode.

The effect of the diffusivity ratio τ on the onset of convec-
tion for a fixed values of Pr = 5, RS = 103 and DS = −0.1 is
shown in Fig. 2(b). We find that the effect of increasing τ is to
increase the oscillatory Rayleigh number Rosc

c thereby making
the system more stable for the parameters chosen for this case.
Fig. 2(c) displays the effect of the solute Rayleigh number RS

on the onset of convection for a fixed value of the parameters
Pr = 5, τ = 0.3 and DS = −0.1. We observe that the effect of
increasing RS is to increase the critical Rayleigh number. The
effect of the Prandtl number on the onset of convection is shown
in Fig. 2(d). It is found that the effect of increasing the value of
Pr decreases the oscillatory Rayleigh number. It is important
to note that for a fixed RS = 103, τ = 0.3 and DS = −0.1, the
oscillatory motions are possible when Pr > 0.0475.

The effect of solute Rayleigh number RS , diffusivity ratio τ

and Prandtl number Pr is insignificant for large couple stress
parameter. However the Soret parameter has significant influ-
ence on the stability of the system for large C.

Fig. 3 indicates the variation of critical Rayleigh number of
stationary and oscillatory modes with the solute Rayleigh num-
ber RS for different values of the Soret parameter DS and for a
fixed values of C = 0.45, τ = 0.3 and Pr = 5.0. It is interesting
to note that for positive Soret parameter DS , the convection first
sets in as stationary mode. However for negative Soret parame-
ter the instability sets in first as oscillatory mode when solute
Rayleigh number is large e.g., when DS = −0.1, the convection
first sets in as stationary mode for small and moderate values of
the solute Rayleigh number (RS � 103 approximately) and for
large RS convection first sets in as oscillatory mode. Further
as DS is increased negatively, the range of RS for which, the
convection first sets in as stationary mode is reduced.
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Fig. 2. Variation of critical Rayleigh number R with couple stress parameter C for different values of DS , τ , RS and Pr.
Fig. 3. Variation of critical Rayleigh number R with solute Rayleigh number
RS for different values of DS .

The variation of finite amplitude critical Rayleigh number
Rf with couple stress parameter C for different values τ , DS

and RS is shown in Fig. 4(a) and (b). It is important to note that
the finite amplitude motions are ruled out for positive Soret pa-
rameter. The steady solutions are very interesting because they
predict that a finite amplitude solution to the system is possible
for negative Soret parameter. Further, the critical value of the
Rayleigh number for which the finite amplitude motions occur
Fig. 4. Variation of finite amplitude critical Rayleigh number Rf with couple
stress parameter C for different values of DS , τ and RS .
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Fig. 5. Variation of Nusselt number with Rayleigh number R for different values of DS , τ , RS and C.
is less than the critical value of the Rayleigh number for station-
ary and oscillatory mode disturbances. Fig. 4(a) indicates that
the effect of Soret parameter is very weak and is to enhance
the instability for small C and this trend reverses for C > 0.6.
The effect of diffusivity ratio τ and solute Rayleigh number
RS is found to be similar to their effects on oscillatory mode
(Fig. 4(b)). That is the finite amplitude Rayleigh number Rf

increases with increase in the value of solute Rayleigh number
RS and diffusivity ratio τ .

In the study of double diffusive convection the determina-
tion of heat and mass transport across the layer plays a very
important role. Here, the onset of convection as the Rayleigh
number is increased is more rapidly detected by its effect on
the heat and mass transfer. The quantity of heat and mass trans-
fer across the layer are given by Nu and NuS respectively, which
represent the ratio of heat or mass transported across the layer
to the heat or mass transported by conduction alone. Fig. 5(a)–
(d) indicate the effect of R on the thermal and solute Nusselt
numbers Nu and NuS for different values of the Soret parame-
ter DS , the diffusivity ratio τ , the solute Rayleigh number RS

and the couple stress parameter C. In each of these cases we
observe that as Rayleigh number increases from one to four
times of its critical value, the heat and mass transfer increase
sharply and as Rayleigh number is increased further, they re-
main almost constant. It is also found that in each case the solute
Nusselt number is above the thermal Nusselt number. We also
note that the effect of increasing DS and C is to decrease the
values of Nu and NuS whereas that of RS and negative Soret
parameter is to increase Nu and NuS . Further the effect of in-
creasing τ is to increase Nu whereas to decrease NuS . Although
the presence of a stabilizing gradient of solute will inhibit the
onset of convection, due to the strong finite amplitude mo-
tions, which exist for large Rayleigh numbers, tend to mix the
solute and redistribute it so that the interior layers of the fluid
are more neutrally stratified. As a consequence of that the in-
hibiting effect of solute gradient is greatly reduced and hence
fluid will convect more and more heat and mass when RS is
increased.

To know the transient behavior, the variation of thermal and
solute Nusselt numbers with time has been considered and is
depicted in Figs. 6 and 7 for different values of Rf , DS and C.
It is clear that as Rf increases, the system becomes more un-
steady and shows sensitivity to the initial conditions. However
as time progresses we see that a steady state is reached via a
transient state. Figs. 6(b) and 7(b) indicate that the effect of
negative Soret parameter is to increase the amplitude of the
oscillations and it takes longer time to reach the steady state
when the negative Soret parameter is increased. The negative
Soret parameter increases the heat and mass transport because
it tends to increase the tendency of modes to exchange energy
in chaotic way. Further the effect of couple stress is to de-
crease the amplitude of the oscillations of heat flux while it in-
crease the amplitude of the oscillations of mass flux (Figs. 6(c)
and 7(c)).
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Fig. 6. Variation of thermal Nusselt number Nu with time t for different values
of R, DS and C.

7. Conclusions

The important results of the linear and non-linear double
diffusive convection in couple stress liquids in the presence of
Soret effect are summarized as follows:

(1) The effects of couple stresses are quite significant for large
values of the non-dimensional parameter C and the large
couple stress parameter delay the onset of convection.

(2) Convection first sets in as oscillatory mode for negative
Soret parameter when the couple stress parameter C is
small. However for large value of C, the convection first
sets in as stationary mode.

(3) The finite amplitude motions are possible for only nega-
tive Soret parameter. The finite amplitude critical Rayleigh
number is less than the critical Rayleigh number for sta-
tionary and oscillatory modes.

(4) The heat and mass transfer decreases with increase in the
values of Soret parameter DS and couple stress parame-
ter C while both increase with increase in the value of the
solute Rayleigh number RS and negative Soret parameters.
But with the increase in diffusivity ratio τ the heat transfer
increases whereas the mass transfer decreases.
Fig. 7. Variation of solute Nusselt number NuS with time t for different values
of R, DS and C.

(5) The numerical results relating to Nu and NuS of unsteady
case for large t compare well with the steady case values.
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Appendix A

The constitutive equations for couple stress fluids are listed
in this appendix. The stress tensor Tij can be decomposed into
symmetric T s

ij and antisymmetric T a
ij parts, which are given by

T s
ij = (−p + λDkk)δij + 2μDij (A.1)

T a
ij = −2ηWij,kk − ρ

2
εijsGs (A.2)

and the couple stress tensor

Mij = 4ηωj,i + 4η′ωi,j (A.3)

where the deformation tensor

Dij = 1
(qi,j + qj,i) (A.4)
2
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the velocity tensor

Wij = −1

2
(qi,j − qj,i) (A.5)

and

ωi = 1

2
εijkqk,j (A.6)

Here qi is the velocity field, λ and μ are material constants with
the dimension of viscosity, and η and η′ are material constants
with the dimension of momentum.

The momentum equation governing the motion of an incom-
pressible couple stress fluid, in the absence of body couples can
be written in the vector form as

ρ0

[
∂q
∂t

+ (q · ∇)q
]

= −∇p + μ∇2q − η∇4q + ρg (A.7)

References

[1] J.S. Turner, Buoyancy Effects in Fluids, Cambridge University Press, Lon-
don, 1973.

[2] J.S. Turner, Double diffusive phenomena, Annu. Rev. Fluid Mech. 6
(1974) 37–56.

[3] J.S. Turner, Multicomponent convection, Annu. Rev. Fluid. Mech. 17
(1985) 11–44.

[4] H.E. Huppert, J.S. Turner, Double diffusive convection, J. Fluid Mech. 106
(1981) 299–329.

[5] J.K. Platten, J.C. Legros, Convection in Liquids, Springer, Berlin, 1984.
[6] T.J. Mc Dougall, Double diffusive convection caused by coupled molecu-

lar diffusion, J. Fluid Mech. 126 (1982) 379–397.
[7] N. Rudraiah, M.S. Malashetty, The influence of coupled molecular diffu-

sion on double diffusive convection in a porous medium, ASME J. Heat
Transfer 108 (1986) 872–878.

[8] N. Rudraiah, P.G. Siddheshwar, A weak nonlinear stability analysis of
double diffusive convection with cross-diffusion in a fluid saturated porous
medium, Heat Mass Transfer 33 (1998).
[9] D.T. Hurle, E. Jakeman, Soret-driven thermosolutal convection, J. Fluid
Mech. 47 (1971) 667–687.

[10] J.K. Platten, G. Chavepeyer, Oscillatory motion in Benard cell due to the
Soret effect, J. Fluid Mech. 60 (1973) 305–319.

[11] M.L. Lawson, W.J. Yang, The stability of a layer of binary of binary gas
mixture heated from below, J. Fluid Mech. 57 (1973) 103–110.

[12] E. Knobloch, Convection in binary fluids, Phys. Fluids 23 (9) (1980)
1918–1920.

[13] G.W.T. Lee, P. Lugas, A. Tyler, Onset of Rayleigh–Benard convection in
binary liquid mixtures of 3He in 4He, J. Fluid Mech. 135 (1983) 235–259.

[14] W. Barten, M. Lucke, M. Kamps, R. Schnitz, Convection in binary fluid
mixtures. I. Extended traveling-wave and stationary states, Phys. Rev. E 51
(1995) 5636–5661.

[15] W. Barten, M. Lucke, M. Kamps, R. Schnitz, Convection in binary fluid
mixtures. I. Localized traveling waves, Phys. Rev. E 51 (1995) 5662–5680.

[16] A. La Porta, C.M. Surko, Convective instability in a fluid mixture heated
from above, Phys. Rev. Lett. 80 (17) (1998) 3759–3762.

[17] M. Bourich, M. Hasnaoui, M. Mamou, A. Amahmid, Soret effect inducing
subcritical and Hopf-bifurcation in a shallow enclosure filled with a clear
binary fluid or a saturated porous medium: A comparative study, Phys.
Fluids 16 (3) (2004) 551–568.

[18] V.K. Stokes, Couple stresses in fluids, Phys. Fluids 9 (1966) 1709–1716.
[19] P.G. Siddheshwar, S. Pranesh, An analytical study of linear and non-

linear convection in Boussinesq–Stokes suspensions, Int. J. Non-Linear
Mech. 39 (2004) 165–172.

[20] R.C. Sharma, M. Sharma, Effect of suspended particles on couple-stress
fluid heated from below in the presence of rotation and magnetic field,
Indian J. Pure Appl. Math. 35 (8) (2004) 973–989.

[21] M.S. Malashetty, D. Basavaraja, Effect of thermal/gravity modulation
on the onset of Rayleigh–Benard convection in a couple stress fluid, I,
J. Trans. Phenomena 7 (2005) 31–44.

[22] S.R. De Groot, P. Mazur, Non-Equilibrium Thermodynamics, North-
Holland, Amsterdam, 1962.

[23] B. Straughan, K. Hutter, A priori bounds and structural stability for
double-diffusive convection incorporating the Soret effect, Proc. Roy. Soc.
London. A 455 (1999) 767–777.

[24] K.R. Rajagopal, M. Ruzicka, A.R. Srinivas, On the Oberbeck–Boussinesq
approximation, Math. Model Methods Appl. Sci. 16 (1996) 1157–1167.

[25] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Dover,
New York, 1981.


